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The X-ray interbranch resonance concept is extended to crystals with a one-

dimensional deformation. The original approach, which proceeds from the

Lagrange formalism, is developed. The principle of local ‘lattice homogeneity’ is

also incorporated in the resonance concept. It postulates the local translation

symmetry by lattice spacings in the vicinity of any point of X-ray trajectories. In

this connection, interbranch scattering is considered as the process that violates

this principle. The new interbranch effect is predicted for a strongly distorted

crystal with thickness of the order of the interbranch extinction length. In this

case, the interbranch wavefield oscillations related to the resonance interbranch

splitting are suggested for the diffraction profile.

1. Introduction

X-ray dynamical diffraction by continuously deformed crystals

is one of the most intricate physical problems. In past years, a

deep insight into many diffraction phenomena in distorted

crystals has been obtained with the help of extensive theor-

etical studies, reviewed by Authier (2005). Nevertheless, new

theoretical investigations that could facilitate solution of the

diffraction problem are still in development for X-ray

diffraction techniques. This is of great importance in the

further study of the interbranch scattering phenomenon,

predicted by Penning (1966) and suggested by Authier (1967)

to explain empirically topographic contrast observed for a

single dislocation (Hart, 1963). These processes increase with

increasing deformation, such that solution of the diffraction

problem runs into serious difficulties. It is worth remarking

that this phenomenon is caused by long-range strain fields but,

in spite of this fact, it occurs in a sufficiently small part of a

crystal. Bearing this in mind, it would be possible to use the

interbranch effects for X-ray studies on a small spatial scale,

which is of practical interest to advanced X-ray diffraction

applications.

As is well known, the solid analytical foundations of inter-

branch processes were formulated by Balibar et al. (1983), who

used the influence function for a crystal with uniform strain

gradient. It was pointed out that the appropriate Green

function should be separated into four parts, two of which can

be considered as ‘normal’ wavefields (i.e. those predicted by

the eikonal theory) and the two others are the ‘new’ ones,

which are due to interbranch scattering. Based on the adia-

batic invariance approach, a new view of the interbranch

problem was given by Shevchenko & Pobydaylo (2003). They

showed that, in the case of non-adiabatic variation of the

crystal lattice, interbranch scattering can be treated as a

beating process similar to quantum beats. It should be noted

that the same interpretation of interbranch processes follows

also from the optic approach to the dynamical theory of X-ray

diffraction with deformed crystals, proposed by Mana &

Palmisano (2004).

If X-ray interbranch beating is considered as the diffraction

effect caused by a ‘new’ wavefield (Authier & Balibar, 1970),

the resonance concept of X-ray interbranch scattering was

developed for crystals with one-dimensional homogeneous

bending (Shevchenko & Pobydaylo, 2005). In the present

paper, this concept is extended to crystals with one-dimen-

sional continuous deformation. The fundamental equations

are derived from the original analytical approach. The novel

features of the X-ray dynamical diffraction by strained crystals

are also deduced from the dispersion analysis of the ‘new’

wavefields. In this connection, implication of the given results

to diffractometry of strongly distorted crystals is discussed.

2. Results

According to the dynamical Takagi theory, the X-ray coherent

wavefield inside a crystal with one-dimensional continuous

distortion is described by the following equations:
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where D0;g, �g, uðzÞ and s stand for the amplitudes of the

transmitted and diffracted waves, the X-ray extinction length,

a continuous displacement field which depends on the depth in

the crystal z and the departure from Bragg’s law of an inci-

dent wave, respectively. Moreover, we assume transmission



geometry and consider the symmetric case without loss of

generality for the further presentation.

With the help of the substitutions D0;g ¼

expfi
R

qðzÞ dzg ~DD0;g, where qðzÞ ¼ ½sþ g duðzÞ=dz�=2, equa-

tions (1) and (2) can be rearranged to the form:
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For a slightly deformed crystal, the solutions of equations (3)

make up the modified Bloch waves, which were introduced

by Kato (1963, 1964a,b) within the eikonal approach. It is

necessary to point out that these waves describe into-a-branch

scattering only. This means that the ‘tie point’ of a modified

Bloch wave on the corresponding dispersion branch moves on

the branch according to the local lattice orientation. In the

case of a strong distortion, amplitude and phase modulation of

the eikonal solutions of equations (3) takes place owing to

interbranch scattering, therefore one can write the amplitudes
~DD0;gðzÞ as follows:

~DD0;gðzÞ ¼
X2

j¼1

A
j
0;gðzÞ

½pðzÞ�1=2
exp i

�

�g

Z
Q

j
0;gðzÞ dz

� �
: ð4Þ

Here A
j
0;gðzÞ are the modulation amplitudes for the trans-

mitted and diffracted waves associated with the appropriate

dispersion branches; pðzÞ ¼ ½1þ �2ðzÞ�1=2, where the deviation

�ðzÞ ¼ !þ ðg du=dzÞ�g=ð2�Þ and ! ¼ s�g=ð2�Þ. The expo-

nents in (4) are the eikonal functions such that

Q1
0;gðzÞ ¼ pðzÞ � i�g

d�ðzÞ=dz

2�pðzÞ
and Q1

0;gðzÞ ¼ �Q2
0;gðzÞ:

It should be noted that the eikonal solutions, which are the

basis of the expansions of (4), can be easily obtained from (3)

by using the non-dimensional quantity "ðzÞ ¼ ð�g=�Þ d�ðzÞ=dz

as the small parameter of the singular perturbation theory.

Thus, expressions (4) introduce a new representation of the

dynamical diffraction by a distorted crystal, which is called the

‘eikonal’ representation. By application of such a repre-

sentation, the study of interbranch processes, specified by the

excitation errors, which are functions of the local orientation

of the lattice, is simplified. This is attained due to reformula-

tion of the dynamical Takagi theory, such that we pass from

the fundamental equations for D0;gðzÞ to differential equations

for A
j
0;gðzÞ, which describes only interbranch contributions.

For this purpose, we employ the original approach based on

the variational Lagrange formalism. In doing so, we consider

the amplitudes A
j
0;gðzÞ as indeterminate Lagrange multipliers

and impose the following conditions on them:
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It should be noted that such conditions will provide the

complete elimination of the into-a-branch contribution from

the fundamental equations. Then, exploiting the conditions

(5), we obtain the derivatives d ~DD0;gðzÞ=dz as
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¼ i
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Substituting the expansions (4) and (6) into Takagi’s equations

(3), it is easy to rearrange them as
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Using the expressions (5) and (7) related to the same recip-

rocal-lattice vector, we make up their sum and difference

combinations that yield the differential expressions for A2
0;gðzÞ

and A1
0;gðzÞ, respectively. Thus, one can obtain
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As is seen from equations (8) and (9), owing to the correct

choice of the additional conditions for Aj
0;gðzÞ, this set of

equations describes interbranch scattering solely. Indeed, the

first equations in (8) and (9), which correspond to the ‘�’ sign

in the exponentials, describe only the energy transfer from

‘branch 2’ to ‘branch 1’, and the second equations, which

correspond to the ‘+’ sign in the exponentials, an inverse

interbranch process. From the relation

�g=ð2�Þ
R

dz½g=pðzÞ�d2u=dz2 ¼ ln j�ðzÞ þ pðzÞj;

equations (8) and (9) can be finally reduced to the following

form after straightforward manipulation:
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¼ �
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R z

0 pðzÞ dz�
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It should also be observed that these equations are valid in the

case of any kind and strength of continuous deformations,

which can induce interbranch crossover in the transmitted

channel. In this case, it was shown by Penning (1966) that the

drastic changes in the intensities of the transmitted and

diffracted waves mean that the intensive ‘new’ wavefield

propagates in the transmitted direction.

If a homogeneously bent crystal is assumed, equations (10)

and (11) will be identical to the appropriate equations derived

by Shevchenko (2003) from the ‘lamellar-crystal’ approach.
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Bearing this in mind, the X-ray interbranch resonance concept

developed for a bent crystal can be extended to a crystal with a

one-dimensional deformation. In this connection, we consider

the transmitted wavefields, which permit the ‘jump’ of the

tiepoint. Then, assuming strong deformation and j!j � 1, one

can obtain the approximate solutions of equations (10) in the

vicinity of the point z0 such that �ðz0Þ ¼ 0:

A1;2
0 ðzÞ ¼ Cþ1;2ðz0Þ exp½ið�Q0=2�W0Þz�

þ C�1;2ðz0Þ exp½ið��Q0=2�W0Þz�; ð12Þ

where

C�1 ðz0Þ ¼
�Q0=2�W0

�Q0

and C�2 ðz0Þ ¼ �
i�0

�0�Q0

expði�=2Þ:

ð13Þ

Here �0 ¼ exp ½ð2i�=�gÞ
R z0

0 pðzÞ dz�; �0 ¼ 2�=�0ðz0Þ, W0 ¼

�=�g and �Q0 ¼ 2½W2
0 þ ð�=�0Þ

2�1=2. In expressions (12) and

(13), the signs ‘+’ and ‘�’ denote the ‘upper’ and ‘lower’ new

branches, respectively. It should be noted that the phase factor

expði�=2Þ is included in the amplitudes C�2 ðz0Þ as well, owing

to the energy transfer from branch 1 to branch 2. It follows

from (13) that the sharp changes of the amplitudes of the ‘new’

wavefields C�1;2ðz0Þ occur under the condition

�=�0 � W0: ð14Þ

When the reduced deformation parameter "ðzÞ � 1 and

denoting "0 ¼ "ðz0Þ, we have jC�1;2ðz0Þj ! 1=2 such that the

behavior of the interbranch amplitudes is similar to the

dependence of the amplitudes of transmitted and diffracted

waves on departure of the incident wave near the exact

conditions. Clearly, in analogy with Bragg’s resonance, the

quantity W can be interpreted as the ‘deviation’ parameter,

which smooths out the resonance variations of the ‘new’

wavefields. Moreover, the quantity �Q0 should be considered

as the interbranch splitting, which determines the distance

between the ‘new’ branches near z0. Such splitting is the result

of interbranch interchange, which is effective in the range �zD

that specifies the X-ray dynamical diffraction in the deformed

crystal. It is evident that, with the approximation �ðzÞ 	
�ðz0Þ þ �

0ðz0Þz, the value �zD can be estimated as �0. As is

obvious from (14), the resonance condition, which corre-

sponds to the beginning of the interbranch process, has the

form �=�ðz0Þ ¼ Wðz0Þ. It is interesting to observe that this

condition coincides with the limit of validity of the eikonal

approximation of the dynamical diffraction theory, established

by Authier & Balibar (1970).

In the vicinity of any point zs, solutions of equations (10)

evidently have the form

A1;2
0 ðzÞ ¼ Cþ1;2ðzsÞ exp

ið�g�Qs � 2�psÞz

2�g

� �

þ C�1;2ðzsÞ exp
ið��g�Qs � 2�psÞz

2�g

� �
: ð15Þ

As appears from (15), the interbranch splitting

�Qs ¼ ½ð2�ps=�gÞ
2 þ ð�0s=p2

s Þ
2�1=2 near zs, where ps ¼ pðzsÞ and

�0s ¼ �
0ðzsÞ. Combining this with equations (10), one can

obtain the following ratios for the amplitudes C�1;2ðzsÞ:

C�2 ðzsÞ

C�1 ðzsÞ
¼ �i

�p2
s

�g�
0
s

�sð�g�Qs � 2�psÞ; ð16Þ

where the phase factor

�s ¼ exp ð2i�=�gÞ
Rzs

0

pðzÞ dz

� �
f�ð0Þ � ½1þ �2ð0Þ�1=2g�1:

Analyzing expressions (16) and the eikonal solutions of the

dynamical diffraction theory at infinity, we find that only the

‘new’ wavefield corresponding to ‘branch 2�’ will propagate in

the transmitted direction far from z0. Using the considerations

developed for a bent crystal by Shevchenko & Pobydaylo

(2005), it is easy to obtain the asymptotic expression IN for the

intensity of this wavefield:

IN ¼ 1�
1

½1þ ð"0=2Þ2�1=2

� �2

: ð17Þ

Assuming "0 � 1, one can find from (17) the intensity

IN ¼ 1� 4="0 that corresponds to the Penning–Polder limit

associated with the interbranch crossover. However, with

decreasing deformation, intensity IN tends to zero as ð"0=2Þ4,

such that it can be neglected within the eikonal approxima-

tion. It is important to emphasize that expression (17) is valid

for deviation j!j � 1. At the same time, when j!j 	 1, the

local structure of the ‘new’ wavefields may manifest itself near

the exit surface of a crystal. In this case, by using (14) one can

obtain the following estimation:

t 	 �0; ð18Þ

where t is the crystal thickness.

Based on general physical arguments, we suggest that,

under the condition (18), X-ray intensities will show the

oscillations determined by the interbranch extinction length.

However, the interbranch oscillations are damped or cannot

be established if t � �0 or t 
 �0, respectively. For the sake

of simplicity, we assume a bent displacement field

uðzÞ ¼ �z2=ð2RÞ oriented along the surface, where R and � are

the radius of curvature and a constant describing deformation,

respectively. Then, estimation (18) is rewritten as follows:

t 	 2�g="; ð19Þ

where " ¼ �g�2
g=ð2�

2RÞ. As is well known, the strong bending,

which causes the interbranch scattering, can be specified by

large "� 1. Supposing such an " in (19), we can predict the

interbranch oscillations of the X-ray intensities for a crystal

with thickness considerably less than the X-ray extinction

length and satisfying the relation (19). It is natural to expect

that these oscillations may manifest themselves in Bragg peaks

as ‘fine structure’, which indicates strong continuous defor-

mations.

It is clear that the above suggestions given for X-rays will

remain valid for electron diffraction by distorted crystals too.

In this connection, we pay attention to the ‘fine-structure’

effect in electron diffraction patterns from icosahedral silver
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nanoclusters, which was reported by Reinhard et al. (1997).

Furthermore, it was established that a satisfactory fit to this

structure could not be obtained with the help of the kinema-

tical diffraction theory. Bearing in mind that strong strain can

be inherent to such clusters (MacKay, 1962; Howie & Marks,

1984), it would be possible to explain this effect as interbranch

wavefield oscillations.

It is worth noting that the interbranch splitting can also be

regarded as a fundamental physical phenomenon connected

with the symmetry of physical space. This symmetry turns out

to depend on the strength of deformation, which dictates the

translation symmetry properties for small distortions. Indeed,

assuming weak deformations, the value of the ‘lamellar’

Poynting vector is conserved independent of the method of

dividing the crystal into infinitesimal ‘lamellae’. This means

that the local translation symmetry by lattice spacings, related

to conservation of the wavefield energies, can be postulated

in the eikonal approximation of dynamical theory. Clearly,

similar considerations can also be applied to waves propa-

gating in isotropic media with small inhomogeneity. Then, the

local translation symmetry related to local homogeneity of

space takes place in the vicinity of any point of the eikonal

trajectory. Bearing this in mind and following Penning &

Polder’s (1961) notation of ‘lattice inhomogeneity’, we

formulate the principle of local ‘lattice homogeneity’, which

reflects the conservation of the eikonal invariants. Then,

interbranch scattering can be considered as the process that

violates the local ‘lattice homogeneity’ by splitting of the local

dispersion modes. Evidently, this is analogous to taking off

degeneracy in quantum-mechanical phenomena. It is known

to consist in the separation of energy levels that is also

accompanied by violation of the initial symmetry of the space.

One can hope that the presented results are of interest to

clarify the physical discussion of the diffraction problem for a

crystal with a continuous deformation. Moreover, the

predicted interbranch features might be helpful to increase the

diagnostic capabilities of the diffraction techniques so that the

studies of ‘thick’ crystals progress. This implies the further

development of the interbranch resonance concept and

carrying out the appropriate experimental investigations.

3. Conclusions

Here we sum up the main results obtained in this work.

1. The X-ray interbranch resonance concept is generalized

for crystals with a one-dimensional continuous deformation.

By applying the original approach based on the Lagrange

formalism, the fundamental equations are derived from

Takagi’s equations for it.

2. The local translation symmetry by lattice spacings is

postulated in the vicinity of any point of the eikonal trajec-

tories. In this connection, the principle of local ‘lattice

homogeneity’, which expresses conservation of the eikonal

invariants, is formulated. This principle is violated in the case

of the interbranch interchange, which leads to the splitting of

the branches of the local dispersion surface. It is noted that

this is similar to taking off a degeneracy phenomenon in

quantum mechanics.

3. The new interbranch effect is predicted for strongly

deformed crystals with thickness considerably less than the

X-ray extinction length �g. It is supposed that the diffraction

profile may show interbranch wavefield oscillations associated

with the resonance splitting of the local dispersion modes. In

this case, the crystal thickness must be of the order of the

interbranch extinction length �0.
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